LEAN, MEAN &
MAINTAINABLE

THEMING
DRUPAL THEMING

BEST PRACTICES

PRESENTED BY @MIKEHERCHEL

» Working with Drupal for 6 years

« Working on the web for 12 years

* Awesome family

» Passionate about usability & ux

» Passionate about Drupal

« #FLDC 14 website designer, themer, & volunteer

* love crappy beer

PART 1:
LAISSEZ-FAIRE
THEMING

... a deliberate abstention from direction or interference

LR N

. Does it work?@

Does it work well@

Can it be abstracted for reuse?
Make it maintainable.

Know everything that's going on.

—'FH.E_PET GRIFFIN
APPROACH TO THEMING

It you want to use a base theme, invest the proper amount of time
and be e expert on this theme. Don't halt-ass it.

Know the mixins

Know the theory

Know your fext editor

e Start on a low level

» Understand everything that's happening
« Sometimes this means that you might not be using the new hotness

* It you use Bootstrap,/Foundation understand the hell out of it

Both provide a great starting point with integrated tools

Both dramatically simplity markup

Both can enforce best practices

Base themes can be upgraded

» Starter themes do not have children — you modity them

* Base themes can sometimes be tough to troubleshoot

» Base theme updates can sometimes break things

DITCHING DRUPAL’S CSS CRUFT

» Template pre-process functions to remove CSS
(https: / /github.com/mherchel /bastard /blob /master /template. php)

21 function bastard_css_alter(&%css) {

22 /* Remove some default Drupal css */

23 $exclude = array(

24 'modules/aggregator/aggregator.css' => FALSE,
25 'modules/block/block.css' =» FALSE,

26 ‘'modules/book/book.css' => FALSE,

27 'modules/comment/comment.css’' =»> FALSE,
28 'modules/dblog/dblog.css' =» FALSE,

29 ‘modules/field/theme/field.css' =»> FALSE,
38 'modules/file/file.css' => FALSE,

31 ‘modules/filter/filter.css' =» FALSE,

32 ‘modules/forum/forum.css' =» FALSE,

33 ‘'modules/help/help.css' =» FALSE,

34 'modules/menu/menu.css' =» FALSE,

35 ‘'modules/node/node.css' =» FALSE,

36 ‘modules/openid/openid.css' =» FALSE,

37 ‘modules/poll/poll.css' => FALSE,

https://github.com/mherchel/bastard/blob/master/template.php

* Magic module

(https: / /drupal.org/project/magic)

https://drupal.org/project/magic

» Good basetheme, or starter theme
* Fences module

 Semantic Views module

* Borealis Semantic Blocks module

e Block Class module

 Bastard Starter Theme
(https: //github.com/mherchel /bastard)

e Bare bones

« Strips out unwanted css
 Some base styles (tabs etc]
* Infegrated responsive primary menu

e Sass, modernizr, livereload, etc

* Very lean & semantic

https://github.com/mherchel/bastard

» Copied favorite parts from various themes (thanks GPLI)

« HTML5 base
« W Wundertheme

« Omega
« \Wrote much of it

* | know what's going onl

PART 2:
SOME BEST
PRACTICES, TIPS, &
TRICKS

» Don't be afraid to stick with what you know

* Don't be afraid to try out new technologies
* The trick is finding the right balance

* One or two new technologies per project

* Base themes like Aurora, Zen, & Omega 4 will do this for youl

« Structure examples

* Base structure: htto: / /thesassway.com /beginner/how-to-structure-a-sass-project

* More info: http: /' /bramsmulders.com/how-i-improved-my-workflow-with-smacss-sass. himl

o \/\/UﬂderTheme: https: / /github.com /Krimson /wundertheme
e Basta rd . https: //github.com/mherchel/bastard

« Make sure it makes sense to you |

http://thesassway.com/beginner/how-to-structure-a-sass-project
http://bramsmulders.com/how-i-improved-my-workflow-with-smacss-sass.html
https://github.com/Krimson/wundertheme
https://github.com/mherchel/bastard

abstractions

— mixX1ns.sSCsSS
base

- anlimations.scss
- fonts.scss

- forms.scss

- medla.scss

- tables.scss

- typography.scss
components

- asilde.scss

- Dbranding.scss

(st1ll under components)
- comments.scss

- footer.scss

- messages.scss

- navigation.scss
- Ppager.scss

- tabs.scss
varilables

- Dbreakpoints.scss
- colors.scss
No—guery.sScCss
print.scss
styles.scss

* Don't follow DOM structure with sass structure
» Keep your selectors no more than 3 deep!

* Definitely no more than 4!

* Llooking at the compiled CSS helps you spot areas for improvement

« OOCSS (object oriented CSS) helps with this

* Both greatly help simplity your sass

» Extends compile by adding your selector to the extended selector

 Can be tricky with media queries
* Mixins add properties to your CSS selector

e |ots of great mixins on Webhﬁp://zerosixfhree.se/8-sass—mixins-\/ou-musf-

have-in-yourtoolbox

http://zerosixthree.se/8-sass-mixins-you-must-have-in-your-toolbox

FIND AND USE MIXINS LIKE
THIS DANDY

@function calculateRem($size) {
$remSize: $size / 16px;

return $remSize * 1lrem;
@

@mixin font-size($size) {
font-size: $size;

font-size: calculateRem($size);

Usage

p{
@include font-size(14px)

Output

p {

font-size: 14px; //Will be overridden if browser supports rem

font-size: @.8rem;

* Huge fan of the Breakpoint compass gem
hitps: //github.com /Team-Sass /breakpoint

» Enables developer to quickly and easily manage breakpoints anc

IE8 fallbacks

* Question: How many breakpointse

https://github.com/Team-Sass/breakpoint

e In 2009 Nlicole Sullivan first talked about OOCSS

» Consulted for Facebook
* Found over 6,498 color declarations
« 261 variations of “Facebook Blue”

» Something is wrong here

“THE PURPOSE OF OOCSS
IS TO ENCOURAGE CODE
REUSE AND, ULTIMATELY,
FASTER AND MORE
EFFICIENT STYLESHEETS
THAT ARE EASIER TO ADD
TO AND MAINTAIN.”

http://coding.smashingmagazine.com/2011/12/12/an-introduction-to-object-oriented-css-oocss

/

* Class names should communicate useful information to developers.

* It's helptul to understand what a specitic class name is going to do

when you read a DOM snippet

Examp|e: use .article-1ist instead of .news

http://nicolasgallagher.com/about-html-semantics-front-end-architecture/

» Confentindependent class names

» Content independent styling - Make it so when placed in difterent
area looks good
location agnostic]

« SMACSS is more of a way to organize
« BEM is a great way to name your classes

* Why not use both

* And, sometimes none

* ... because its generally a lot easier to write CSS than to do php functions
to add classes.

TIP: DEVELOP LOCALLY WITH
REMOTE FILES

Have Drupal/Apache redirect files/* to live site
» State_file_proxy module

* Apache .htaccess rewrite rules

o https://www.lullabot.com/blog/article /using-remote-image-fileswhen-you-develop-

locally
* Note: Add this code to the beginning of your .htaccess file

HECKLE ME AT @MIKEHERCHEL

https://www.lullabot.com/blog/article/using-remote-image-files-when-you-develop-locally

» Two ruby managers
* Ruby Version Manager (RVM) https: //rvm.io
* Ruby Environment (RBENV) https: //github.com /sstephenson/rbenv

* Bundler (http://bundler.io) - Manage Ruby Gems

https://rvm.io
https://github.com/sstephenson/rbenv
http://bundler.io

TIP: RESPONSIVE MENU
PATTERNS

« Create your own menu system (it's easy)
« Works all the way back to IES

.menu 1li ul { display: none; }

.menu li:hover ul { display: block; }

HECKLE ME AT @MIKEHERCHEL

* To do a mobile menu, add some |Query click events

S('.menu .nav-click').click (function () {
$('.nav-click') .toggleClass ('nav-click-active');
$(this) .siblings(’ .menu 1li .menu') .slideToggle ()

})

 Or a toggle classes and show/hide in css

* The point here is it you write it, you understand it and can... bend it fo your
willlll

« Code at hitps: //github.com/mherchel /bastard /blob/master /is /scripts. s

https://github.com/mherchel/bastard/blob/master/js/scripts.js

* Susy
» Singularity
* None (OMG)

e Pick one, stick with it, know it inside and out

* Use LiveReload (http: //livereload.com) to automatically refresh the
css in your browser withouta tull page refresh!

* Makes in-browser development & design much more efficient

* lips:
« Add CSS directory fo livereload app

* Installing the browser extension negates the need for the]S snippit

http://livereload.com

* learn mobiletirst development

* Breakpoint is built to use it, and it simplifies your code

* Sweat the minor (visual) theming

* Don't forget to theme Drupal's status messages

e Use some fransitions

* Don't sweat the extraneous wrapper div its going to be a PITA

PART 3:
TROUBLESHOOTING
AND RESOURCES

» Test early and test often

* Make it easy for yourself to test
* You'll get a sense of what works and what doesn't
* Test menus

» Test positioning

» Breakpoint gem can create no-query fallback

* load this using IE Conditionals

» Progressive Enhancement: Start at the least compatible browsers

IE8, Android 2.x) and work up

» Gracetul Degradation: Start at the most compatible browsers ana
develop fallbacks for earlier

e Use combination of both

» User Modernizr to help (http://modernizr.com

http://modernizr.com

BECOME A DEV-TOOLS POWER
USER!

e Chrome dev tools

-F dev tools

F dev tools (OMG)

Resources

* hitp://devioolsecrets.com

* hitps: //developers.google.com/chrome-developertools

HECKLE ME AT @MIKEHERCHEL

http://devtoolsecrets.com
https://developers.google.com/chrome-developer-tools

FRONT END RESOURCES

* http://zerosixthree.se /8-sassmixinsyou-musthave-invyourtoolbox

* hitps://qgithub.com/snugug/north * This is awesome

o http://nicolasgallagher.com/

QUESTIONS?

http://zerosixthree.se/8-sass-mixins-you-must-have-in-your-toolbox
https://github.com/snugug/north
http://nicolasgallagher.com/

